16 research outputs found

    Submonolayer growth of cobalt on metallic and insulating surfaces studied by scanning tunneling microscopy and kinetic Monte-Carlo simulations

    Get PDF
    Submonolayer epitaxial growth is obtained by the deposition of less than a complete layer of atoms on a single crystal surface. It is of fundamental interest for industrial applications (e.g. in the semiconductor industry) as well as from the point of view of basic research. For example, it is known that nanometer-sized atomic structures (nanostructures) exhibit remarkable physical and chemical properties which can differ greatly from those of bulk matter. In order to investigate these properties, it is often necessary to create large quantities of well defined and possibly spatially ordered nanostructures. One way to achieve this result is self-organized growth where one deposits atoms on a clean crystalline surface and lets the growth process evolve freely. Here, nanostructures result from the atomic diffusion and aggregation processes taking place at the surface. Understanding the exact nature of these processes is of ongoing interest in the field of nanostructure growth. In this thesis we report about submonolayer growth experiments of the ferromagnetic transition metal cobalt. Cobalt was chosen because it exhibits remarkable magnetic properties. These experiments were performed in an ultra-high vacuum chamber and molecular beam epitaxy was used to grow the nanostructures. Observations of the surface were made using a variable-temperature scanning tunneling microscope (STM). In order to get a better understanding of the atomic processes happening at the surface, we developed two adapted computational simulation methods. Kinetic Monte-Carlo (KMC) simulations were used to get an atomistic picture of the surface while mean field rate equations were integrated numerically to yield cluster densities. We study the growth of cobalt on three different surfaces. By depositing Co on a clean Pt(111) crystal surface, we observe that the platinum surface reconstructs by forming star-shaped partial dislocations for sample temperatures above 180 K (-93°C). We also observe that island densities deviate from predictions of all known models towards higher values for these same temperatures. By simulation we are able to show that insertion of Co into the topmost platinum layer creates a repulsive network of dislocations. We show that these dislocations act as diffusion inhibiting barriers and thus influence the island density by constraining the free movement of atoms at the surface. We also show that the Co dimer and trimer diffuse on Pt(111) before dissociating and are able to extract corresponding activation barriers. We also study the deposition of Co on a Ru(0001) surface which shows a more conventional temperature dependence. By comparing simulation and experiment we extract all relevant diffusion activation barriers and show that at high temperatures the Co dimer and trimer dissociate. Finally, we investigate the growth of Co on the hexagonal boron nitride superlattice which forms on a Rh(111) surface. On this surface Co clusters form three-dimensional hemispherical dots. We show how the substrate corrugation influences diffusion of Co atoms and that clusters up to the size of the pentamer can diffuse. By simulation, we also extract the relevant migrations and desorption barriers

    Detection of health deterioration in a COVID-19 patient at home: the potential of ambient sensor systems

    Get PDF
    The COVID-19 pandemic created increased interest in monitoring patients at home to allow timely recognition of health deteriorations. Hospital care is particularly demanding in these patients because of the necessity for isolation to avoid further spread of the disease. Therefore, home care is a preferred treatment setting for these patients. This is, to our knowledge, the first report indicating the potential of an affordable, contactless, and unobtrusive ambient sensor system for the detection of signs of health deterioration in a patient with COVID-19 by a caregiver from a distance. Prospective data acquisition and correlation of the data with clinical events were obtained from an 81-year-old senior with COVID-19 before and, in particular, over a period of 10 days prior to hospitalization. Clinical signs included weakness, increased respiration rate, sleep disturbances, and confusion. The visualization of a combination of this information on a dedicated dashboard allowed the caregiver to recognize a serious health deterioration that required a lifesaving hospitalization. The potential of such ambient sensor systems to detect signs of serious health deterioration in patients with COVID-19 opens new opportunities for use in asymptomatic or oligosymptomatic patients who live alone and are sent back to their homes for isolation in quarantine after diagnosis

    Wearable Based Calibration of Contactless In-home Motion Sensors for Physical Activity Monitoring in Community-Dwelling Older Adults

    Get PDF
    Passive infrared motion sensors are commonly used in telemonitoring applications to monitor older community-dwelling adults at risk. One possible use case is quantification of in-home physical activity, a key factor and potential digital biomarker for healthy and independent aging. A major disadvantage of passive infrared sensors is their lack of performance and comparability in physical activity quantification. In this work, we calibrate passive infrared motion sensors for in-home physical activity quantification with simultaneously acquired data from wearable accelerometers and use the data to find a suitable correlation between in-home and out-of-home physical activity. We use data from 20 community-dwelling older adults that were simultaneously provided with wireless passive infrared motion sensors in their homes, and a wearable accelerometer for at least 60 days. We applied multiple calibration algorithms and evaluated results based on several statistical and clinical metrics. We found that using even relatively small amounts of wearable based ground-truth data over 7–14 days, passive infrared based wireless sensor systems can be calibrated to give largely better estimates of older adults’ daily physical activity. This increase in performance translates directly to stronger correlations of measured physical activity levels with a variety of age relevant health indicators and outcomes known to be associated with physical activity

    A Sensor-Driven Visit Detection System in Older Adults Homes: Towards Digital Late-Life Depression Marker Extraction

    Get PDF
    Modern sensor technology is increasingly used in older adults to not only provide additional safety but also to monitor health status, often by means of sensor derived digital measures or biomarkers. Social isolation is a known risk factor for late-life depression, and a potential component of social-isolation is the lack of home visits. Therefore, home visits may serve as a digital measure for social isolation and late-life depression. Late-life depression is a common mental and emotional disorder in the growing population of older adults. The disorder, if untreated, can significantly decrease quality of life and, amongst other effects, leads to increased mortality. Late-life depression often goes undiagnosed due to associated stigma and the incorrect assumption that it is a normal part of ageing. In this work, we propose a visit detection system that generalizes well to previously unseen apartments - which may differ largely in layout, sensor placement, and size from apartments found in the semi-annotated training dataset. We find that by using a self-training-based domain adaptation strategy, a robust system to extract home visit information can be built (ROC AUC=0.773). We further show that the resulting visit information correlates well with the common geriatric depression scale screening tool (=-0.87, p=0.001), providing further support for the idea of utilizing the extracted information as a potential digital measure or even as a digital biomarker to monitor the risk of late-life depression

    A systems approach towards remote health-monitoring in older adults: Introducing a zero-interaction digital exhaust.

    Get PDF
    Using connected sensing devices to remotely monitor health is a promising way to help transition healthcare from a rather reactive to a more precision medicine oriented proactive approach, which could be particularly relevant in the face of rapid population ageing and the challenges it poses to healthcare systems. Sensor derived digital measures of health, such as digital biomarkers or digital clinical outcome assessments, may be used to monitor health status or the risk of adverse events like falls. Current research around such digital measures has largely focused on exploring the use of few individual measures obtained through mobile devices. However, especially for long-term applications in older adults, this choice of technology may not be ideal and could further add to the digital divide. Moreover, large-scale systems biology approaches, like genomics, have already proven beneficial in precision medicine, making it plausible that the same could also hold for remote-health monitoring. In this context, we introduce and describe a zero-interaction digital exhaust: a set of 1268 digital measures that cover large parts of a person's activity, behavior and physiology. Making this approach more inclusive of older adults, we base this set entirely on contactless, zero-interaction sensing technologies. Applying the resulting digital exhaust to real-world data, we then demonstrate the possibility to create multiple ageing relevant digital clinical outcome assessments. Paired with modern machine learning, we find these assessments to be surprisingly powerful and often on-par with mobile approaches. Lastly, we highlight the possibility to discover novel digital biomarkers based on this large-scale approach

    Potential of Ambient Sensor Systems for Early Detection of Health Problems in Older Adults

    Get PDF
    Background: Home monitoring sensor systems are increasingly used to monitor seniors in their apartments for detection of emergency situations. The aim of this study was to deliver a proof-of-concept for the use of multimodal sensor systems with pervasive computing technology for the detection of clinically relevant health problems over longer time periods. Methods: Data were collected with a longitudinal home monitoring study in Switzerland (StrongAge Cohort Study) in a cohort of 24 old and oldest-old, community-dwelling adults over a period of 1 to 2 years. Physical activity in the apartment, toilet visits, refrigerator use, and entrance door openings were quantified using a commercially available passive infrared motion sensing system (Domosafety S.A., Switzerland). Heart rate, respiration rate, and sleep quality were recorded with the commercially available EMFIT QS bed sensor device (Emfit Ltd., Finland). Vital signs and contextual data were collected using a wearable sensor on the upper arm (Everion, Biovotion, Switzerland). Sensor data were correlated with health-related data collected from the weekly visits of the seniors by health professionals, including information about physical, psychological, cognitive, and behavior status, health problems, diseases, medication, and medical diagnoses. Results: Twenty of the 24 recruited participants (age 88.9 ± 7.5 years, 79% females) completed the study; two participants had to stop their study participation because of severe health deterioration, whereas two participants died during the course of the study. A history of chronic disease was present in 12/24 seniors, including heart failure, heart rhythm disturbances, pulmonary embolism, severe insulin-dependent diabetes, and Parkinson's disease. In total, 242,232 person-hours were recorded. During the monitoring period, 963 health status records were reported and repeated clinical assessments of aging-relevant indicators and outcomes were performed. Several episodes of health deterioration, including heart failure worsening and heart rhythm disturbances, could be captured by sensor signals from different sources. Conclusions: Our results indicate that monitoring of seniors with a multimodal sensor and pervasive computing system over longer time periods is feasible and well-accepted, with a great potential for detection of health deterioration. Further studies are necessary to evaluate the full range of the clinical potential of these findings

    Case Report: Ambient Sensor Signals as Digital Biomarkers for Early Signs of Heart Failure Decompensation

    Get PDF
    Home monitoring systems are increasingly used to monitor seniors in their apartments for detection of emergency situations. More recently, multimodal ambient sensor systems are also used to monitor digital biomarkers to detect clinically relevant health problems over longer time periods. Clinical signs of HF decompensation including increase of heart rate and respiration rate, decreased physical activity, reduced gait speed, increasing toilet use at night and deterioration of sleep quality have a great potential to be detected by non-intrusive contactless ambient sensor systems and negative changes of these parameters may be used to prevent further deterioration and hospitalization for HF decompensation. This is to our knowledge the first report about the potential of an affordable, contactless, and unobtrusive ambient sensor system for the detection of early signs of HF decompensation based on data with prospective data acquisition and retrospective correlation of the data with clinical events in a 91 year old senior with a serious heart problem over 1 year. The ambient sensor system detected an increase of respiration rate, heart rate, toilet use at night, toss, and turns in bed and a decrease of physical activity weeks before the decompensation. In view of the rapidly increasing prevalence of HF and the related costs for the health care systems and the societies, the real potential of our approach should be evaluated in larger populations of HF patients
    corecore